funcdesigner.

ÇÔ¼ö ¼³°è ¹× ÀÚµ¿ ÆÄ»ý »óÇ° ¿ë ÆÄÀ̽㠸ðµâ
Áö±Ý ´Ù¿î·Îµå

funcdesigner. ¼øÀ§ ¹× ¿ä¾à

±¤°í

  • Rating:
  • ƯÇã:
  • BSD License
  • °¡°Ý:
  • FREE
  • °Ô½ÃÀÚ À̸§:
  • Dmitrey Kroshko
  • °Ô½ÃÀÚ À¥»çÀÌÆ®:
  • http://openopt.org

funcdesigner. ű×


funcdesigner. ¼³¸í

±â´É µðÀÚÀÎ ¹× ÀÚµ¿ ÆÄ»ý »óÇ°À»À§ÇÑ ÆÄÀ̽㠸ðµâ Funcdesigner´Â BSD ¶óÀ̼¾½º¸¦ unde ¹× ÆÄÀ̽ã + Numpy·Î ÀÛ¼ºÇÑ ÄÄÇ»ÅÍ ´ë¼ö ½Ã½ºÅÛ (CA)À¸·Î, Ç÷§ÆûÀ» ±³Â÷ Ç÷§Æû (Linux, Windows, Mac OS µî)À» ¸¸µì´Ï´Ù. ƯÈ÷ ºñ¼±Çü ¹æÁ¤½ÄÀÇ ¼öÄ¡ ÃÖÀûÈ­ ¹× ÇØ°á ½Ã½ºÅÛÀ» °³¹ßÇϱâ À§ÇØ °úÇÐ ¼ÒÇÁÆ®¿þ¾î¸¦ °³¹ßÇϱâ À§ÇØ Python ¾ð¾îÀÇ RAD ´É·ÂÀ» Çâ»ó½Ãŵ´Ï´Ù. ÇÁ·¹ÀÓ ¿öÅ©ÀÇ Å° ±â´ÉÀº ÀÚµ¿ ºÐÈ­ (AD) (À¯ÇÑ Â÷ÀÌÁ¡ À¯µµÃ¼ ±Ù»çÄ¡¸¦ ÅëÇØ ¼öÄ¡ ºÐÈ­¿Í È¥µ¿ÇÏÁö ¾Ê¾ÆµµµË´Ï´Ù) Maxima, Sympy µîÀÌ Á¦°øÇÏ´Â »ó¡Àû Â÷º°È­). BTW, »ó¾÷ µµ±¸ Tomlab / MAD ÀÚµ¿ Â÷º°È­ ºñ¿ë 4000 $ .See FuncDesigner AD UsageExample : Funcdesigner °¡Á® ¿À±â * a, b, c = oovars ( 'a', 'b', 'c') f1, f2 = sin ( a) + cos (b) - log2 (c) + sqrt (b), ÇÕ / + c * cosh (b) / arctan (a) + c * c + C / (a * c.size) f3 = f1 * f2 + 2 * a + sin (b) * (1 + 2 * C.Size + 3 * f2.size) f = 2 * a * b * c + f1 * F2 + F3 + µµÆ® (A + C, B + C) Æ÷ÀÎÆ® = {A : 1, B : 2, C : } # ±×·¯³ª ÆÄÀ̽ã ListSprint ´ë½Å ¼ýÀÚ ¹è¿­À» »ç¿ëÇÏ´Â °ÍÀÌ ÁÁ½À´Ï´Ù ( f (Æ÷ÀÎÆ®)) Àμâ (FD (Æ÷ÀÎÆ®)) Àμâ (FD (Æ÷ÀÎÆ®, A)) Àμâ (FD (Æ÷ÀÎÆ®, )) Àμâ (FD (Æ÷ÀÎÆ®, °íÁ¤ ¹Ù¸£ = ) ¿¹»ó Ãâ·Â : , )} 69.7577995988.89020412109.93551537 {B : ¹è¿­ ()} {B : ¹è¿­ () * funcdesigner codeexample¿¡¼­ "for"»çÀÌŬÀ» »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù : funcdesigner °¡Á® ¿À±â * a, b, c = oovars ( 'a', 'b', 'c') f1, f2 = sin ( a) + cos (b) - log2 (c) + sqrt (b), ÇÕ / + c * cosh (b) / arctan (a) + c * c + C / (a * c.size) f3 = f1 * f2 + 2 * a + sin (b) * (1 + 2 * c. + 3 * f2.size) f = sin (f2) * f3 + 1m = 15for I ¹üÀ§ (m) : f = 0.5 * f + 0.4 * f3 * cos (f1 + 2 * f2) Æ÷ÀÎÆ® = {a : 1, b : 2, c : } # ±×·¯³ª, ´ç½ÅÀº dyon listsprint (f (Æ÷ÀÎÆ®)) Àμâ (FD (Æ÷ÀÎÆ®)) Àμâ (FD (Æ÷ÀÎÆ®, A)) Àμâ (FD (Æ÷ÀÎÆ®, )) Àμâ (FD (Æ÷ÀÎÆ®, ¼öÁ¤±â = ) {A : ¾î·¹ÀÌ (), C : ¹è¿­ ( )} - 436.83015952204.25331181186.38788436 {B : ¹è¿­ ( )} {B : ¹è¿­ (} * ÀϺΠ±â´ÉÀÌ ´Ù¸¥ ¾ð¾î (C, Fortran µî)¿¡ ÀÛ¼ºµÇ¾ú°Å³ª ´Ù¸¥ ÀÌÀ¯·Î ÀÎÇØ Funcdesesigner ±¤°í ±â´ÉÀ» ÃÊ°úÇÏ´Â °æ¿ì ( "/"µ¿¾È "·çÇÁ" , ºñ¼±Çü, MB Â÷µ¿ ¹æÁ¤½ÄÀÇ ½Ã½ºÅÛÀ» ÇØ°áÇϱâÀ§ÇÑ ·çƾ (MB Â÷µ¿ ¹æÁ¤½Ä µî)Àº ÀÚ½ÅÀÇ OofunÀ» ÇÔ¼ö ÁÖÀ§¿¡ ·¡ÆÛ·Î Á¤ÀÇ ÇÒ ¼ö ÀÖÀ¸¸ç ´©¶ô µÈ ÆÄ»ý¹°Àº derapproximitor¸¦ ÅëÇØ À¯ÇÑ Â÷ÀÌÁ¡ ÆÄ»ý »ó´ë¹æ ±Ù»ç¿¡ ÀÇÇØ µ¤¿© ÀÖ½À´Ï´Ù. * FuncDesigner»Ó¸¸ ¾Æ´Ï¶ó derappoximator´Â OpenOPT ÇÁ·¹ÀÓ ¿öÅ©¿¡¼­ µ¶¸³Àû ÀÎ ÆÄÀ̽㠸ðµâ·Î Á¦¿ÜµÇ¾ú½À´Ï´Ù. OpenOPT´Â 1 Â÷ ÆÄ»ý »óÇ°À» Á¦°ø ÇÒ ÇÊ¿ä°¡¾ø´Â Funcdesigner ¸ðµ¨À» ÃÖÀûÈ­ ÇÒ ¼ö ÀÖ½À´Ï´Ù. example import NLPA, B, C = oovars ( 'a', 'b', 'c') f = sum (a * ) ** 2 + b ** 2 + C ** 2startPoint = {A : , B : 2, C : 40} # ±×·¯³ª ÆÄÀ̽ã ListSP ´ë½Å ¼ýÀÚ ¹è¿­À» »ç¿ëÇÏ´Â °ÍÀÌ ÁÁ½À´Ï´Ù = NLP (F, StartPoint) p.constraints = , <9 (c-2) ** 2 <1 b 1.01, ((b + c * log10 (a) .sum () - 1) ** 2) .EQ (0)] r = p2 ( 'ralg') Àμâ r.xfexpected Ãâ·Â : ... objfunvalue : 717.75631 (½ÇÇà °¡´É, max constraint = 7.44605E-07) {a : ¹è¿­ (), B : ¹è¿­ (, C : ¹è¿­ ()} ¿ä±¸ »çÇ× : ¡¤ ÆÄÀ̽㠡¤ NUMPY.


funcdesigner. °ü·Ã ¼ÒÇÁÆ®¿þ¾î

¿À¸£´Ù

Ascend´Â ÇÏµå ¿£Áö´Ï¾î¸µ ¹× °úÇÐ ¹®Á¦¸¦ ÇØ°áÇϱâÀ§ÇÑ À¯¿¬ÇÑ ¸ðµ¨¸µ ȯ°æÀÔ´Ï´Ù. ...

142

´Ù¿î·Îµå